1、定比分点坐标公式:X=(x1+λx2)/(1+λ)。
2、去分母得:x-x1=kx2-kx 所以x(1+k)=x1+kx2 所以x=(x1+kx2)/(1+k)这就是定比分点的坐标公式 类似的方法可以推导平面上的定比分点的坐标公式 设A(X1,Y1),B(X2,Y2),点M(X,Y)分AB为定比k:AM:MB=K 则有公式x=(x1+kx2)/(1+k) , y=(y1+ky2)/(1+k)。
3、定比分点公式:x=(x1+λx2)/(1+λ)。设坐标轴上一有向线段的起点和终点的坐标分别为x1和x2,分点M分此有向线段的比为λ,那么,分点M的坐标x=(x1+λx2)/(1+λ)。定比分点公式是平面坐标系中一个重要的公式,用于描述一个点在线段上的位置。
4、∵λ=(x-x1)/(x2-x)∴λx2-λx=x-x1λx2+x1=λx+x得,x=(λx2+x1)/(λ+1)同理,y=(λy2+y1)/(λ+1)注:当λ=1时,即中点坐标公式。
5、对于轴上两个已给的点P,O,它们的坐标分别为X1,X2,在轴上有一点L,可以使PL/LO等于以知常数λ。即PL/LO=λ,我们就把L叫做有向线段PO的定比分点。
1、设PP2是直线上的两点,P是l上不同于PP2的任意一点。则存在一个实数λ,使向量P1P=λ向量PP2,λ叫做点P分有向线段P1P2所成的比。
2、λ大于0,作NP平行于OP2,交OP1于点N。然后你用三角形向量加法算算就懂了。λ小于零且不等于-1,需要你作反向延长线,这就是负向量的运用。以上就是画图理解。这道题要解决最好的办法还是用坐标来做。实际上这里隐含了一个两点间的几等分点公式和一些杂七杂八的玩意,不过这里你用不到他。